当前位置:首页 > 试题 > 数学试题

分数应用题教学设计

时间:2024-12-08 08:39:12
分数应用题教学设计

分数应用题教学设计

作为一名专为他人授业解惑的人民教师,时常需要准备好教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么大家知道规范的教学设计是怎么写的吗?以下是小编收集整理的分数应用题教学设计,希望对大家有所帮助。

分数应用题教学设计1

教材分析:

这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。

学情分析:

用线段图表示题目的数量关系有助于学生理解题意、分析数量关系。再通过“想”帮助学生弄清,要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。

教学目标:

1.认识“求比一个数多(少)百分之几”的应用题的结构特点。

2.理解和掌握这类应用题的数量关系、解题思路和解题方法。

教学重点:

掌握“求比一个数多(少)百分之几”的应用题的解题方法,正确解答。

教学难点:理解这类应用题的数量关系、解题思路和解题方法。

教学过程:

一、复习。

1、说出下面各题中表示单位“1”的量,并列出数量关系式。

(1)男生人数占总人数的百分之几?

(2)故事书的本数相当于连环画本数的百分之几?

(3)实际产量是计划产量的百分之几?

2、只列式,不计算。

(1)140吨是60吨的百分之几?

(2)260吨是40吨的百分之几?

3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

【教学过程说明:通过复习,为旧知识向新知识迁移做好必要的准备:①明确题目中哪个量是单位“1”;②求一个数是另一个数(也就是单位“1”)的百分之几的数量关系及解题模式。】

二、探究新知:

1、出示例3:

一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

2、讨论:

(1)这道题与上面的复习题相比较,相同的地方是什么?什么发生了变化?

【教学过程说明:从题目对比中引导学生找出异同点,通过不同点,引入新知,构建新知。】

板书课题:较复杂的百分数应用题

(2)出示线段图:

提问:

①题目问题:“实际造林比原计划多百分之几”指的是什么?

②应该把谁看作单位“1”?哪一个量和单位“1”量比较?

③要求“实际造林比计划多百分之几”可以理解成“一个数是另一个数的百分之几”吗?你能说说?

④根据“求一个数是另一个数的百分之几?”用什么方法计算?

⑤那要先解决什么问题?

【教学过程说明:在已有知识的基础上,引导学生理解题意,将问题转化为实际造林比原计划多出的面积是原计划的造林面积的百分之几,弄清题目中的数量关系。】

(3)学生独立列式解答,教师巡回辅导,注意观察学生列式有没有不同。

列式解答:

(14-12)÷12

=2÷12

≈0.167

=16.7%

答:实际造林比原计划多16.7%。

如果发现有不同的解法,引导学生想一想:这道题目还有其它解法吗?学生小组讨论,使学生认识到,原计划造林数量看作单位“1”,例3还可以有以下解法:

14÷12-1≈1.167-1=0.167=16.7%

答:实际造林比原计划多16.7%。

【教学过程说明:在理解题意,弄清数量关系的基础上,让学生独立解题,并鼓励学生用不同方法解,学生可以从中体验解题思路的多样性。】

(4)独立练习

我校在创建规范化学校中,队部室进行装修,计划投入0.4万元,实际投入0.5万元,实际投入超过计划百分之几?

3、思考:如果例3中的问题改成;“原计划造林比实际造林少百分之几?”该怎样解答?

问:与例三相比较,又什么不同?

引导学生讨论、分析:

①解答百分数应用题时,要弄清楚谁与谁比,比的标准不同,单位“1”也不同。解题时要注意找准谁是单位“1”。

②由于比的标准不同,甲比乙多百分之几,乙并不比甲少相同的百分之几。

学生独立列式解题:

①(14-12)÷14②1-12÷14【教学过程说明:鼓励学生

=2÷14≈1-0.857综合运用所学知识和技能

≈0.143=1-85.7%解决问题,发展实践能力

=14.3%=14.3%和创新精神。】

答:原计划造林比实际造林少14.3%。

小结:

(1)找准单位“1”量,和“哪一个量”与单位“1”量进行比较。(2)依据“求一个数是另一个数的百分之几”进行解答。

三、巩固练习

1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位“1”。

(1)今年比去年增产百分之几?

(2)男生比女生少百分之几?

(3)一种商品,降价了百分之几?

2、选择题。

果园里有荔枝树50棵,苹果树比荔枝树多10棵,苹果树比荔枝树多百分之几?()

A.50÷10B.10÷50

C.(50+10)÷50D.(50-10)÷50

3、做一做

某工厂九月份用水800吨,十月份用水700吨。十月份比九月份节约用水百分之几?

四、小结

解答较复杂的百分数应用题时:

1.找出谁是单位“1”。

2.由问题找出谁与谁比(数量关系)。

3.依据“求一个数是另一个数的百分之几”进行解答。

分数应用题教学设计2

教学目标:

1、结合具体的情景,体会理解分数加减法的意义。

2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。

3、让学生在讨论交流中,感知转化的数学思想,体验 ……此处隐藏21907个字……用题。

2.培养分析能力,发展学生思维。

教学重点:正确分析数量关系,找准单位1

教学难点:依题意正确画图教学过程:

一、复习。

1.先说出下列各算式表示的意义,再口算出得数。

2.指出下面每组中的两个量,应把谁看作单位1。

(1)梨的筐数是苹果的。

(2)梨的筐数的和苹果的筐数相等。

(3)白羊只数的等于黑羊的只数。

(4)白羊的只数相当于黑羊的。

3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

(1)有40筐苹果,梨的筐数是苹果的。()?

(2)梨的筐数是和苹果的筐数相等,有40筐。()?

(3)有40只白羊,白羊的只数的等于黑羊的只数。()?

(4)白羊的只数相当于黑羊的,有40只黑羊。()?

二、新授。

1.出示例3。

小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

(1)指名读题,说也已知条件和问题。

(2)怎样用线段图表示已知条件和问题。

先画一条线段,表示谁储蓄的钱数?为什么?

学生回答后,教师画线段图。

再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

教师画:

(2)分析数量关系。

引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

(3)确定每一步的算法,列式计算。

①求小华储蓄的钱数怎样想?

引导学生回答:根据小华储蓄的钱数是小亮的

把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

(元)

②求小新储蓄的钱数怎样想?

引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

(元)

把上面的分上步算式列成综合算式,该怎样列?

(元)

(4)检验,写答语。答:小新储蓄了10元。

2.做一做。

让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

3.小结。

从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

三.巩固练习。

完成练习四的第6、7题。

四、全课小结。

这节课我们共同研究了什么?

解答这类分数乘法两步应用题关键是什么?

五、布置作业。

完成练习四的第8~10题。

教学反馈:

分数应用题教学设计15

教学重点:

1、掌握两步分数应用题的解题思路和方法。

2、画线段图分析应用题的能力。

教学难点:

渗透对应思想。

教学过程:

一、复习、质疑、引新

1.指出下面分率句中谁是单位1(课件一)

①乙是甲的;

②小红的身高是小明的

③参加合唱队的同学占全班同学的;

④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

2.口头分析并列式解答

①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

二、探索、悟理

1.出示组编的例题

例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

学生审题后,教师可提出如下问题让学生思考讨论。

①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

②小新储蓄的是小华的,又是什么意思?谁是单位1?

思考后,可以让学生试着把图画出来。

(演示课件)

然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

由此基础上试列综合算式:

2.做一做

小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

1)可先让学生一起分析数量关系,然后独立画图并列式解答。

请一名中等学生板演。

(张)

(张)

答:小明有40张。

③你能列综合算式吗?

三、归纳、明理

1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

①认真读题弄清条件和问题

②确定单位1找准数量关系

根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

③列式解答

板书为:抓住分率句,找准单位1,

画图来分析,列式不用急。

2.质疑问难

四、训练、深化

1.联想练习根据下面的每句话,你能想到什么?

①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

②修了全长的

③现在的售价比原来降低了

2.先口头分析数量关系,再列式解答。

①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

3.提高题。

六、板书设计

分数乘法应用题

小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

《分数应用题教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式